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6.5 Stabilité et potentiels thermodynamiques
6.5.1 Critères de stabilité de l’énergie interne
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6.1.1 Phase

Phase : une phase est un état de la matière qui occupe un sous-espace
de l’espace des états caractérisé par des propriétés physiques particulières
du système.

Phases principales :

1 Solide : la matière conserve son volume et sa forme géométrique dans un
récipient.

2 Liquide : la matière conserve son volume mais prend la forme
géométrique du récipient.

3 Gaz : la matière se répartit dans le volume du récipient et prend la forme
géométrique du récipient.

Autres phases :

1 Plasma : à très haute température, certains électrons se libèrent de
l’attraction électrostatique des noyaux atomiques.

2 Supraconducteur : à basse température, certains matériaux ont une
résistivité nulle et une conductivité électrique infinie.

3 Superfluidité : à basse température, certains matériaux ont une viscosité
nulle.
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6.1.1 Expérience - Plasma

1 Un plasma est créé par ionisation de l’air (azote) qui entoure un
conducteur porté à très haute tension (effet corona). Par effet de pointe,
l’ionisation a lieu autour des parties pointues du conducteur à très haute
tension. Les décharges électriques sont accompagnées d’un bruit de
crépitement. L’ionisation de l’azote donne lieu à un plasma (couleur
bleu-violet). Une odeur particulière accompagne ce phénomène car de
nombreux composés chimiques sont créés, notamment de l’ozone.

2 Un plasma est créé par ionisation d’un gaz qui entoure la sphère
métallique interne portée à très haute tension par rapport à la sphère
externe. Le plasma est généré le long des lignes de champ électrique
radial.
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6.1.1 Expérience - Supraconductivité

1 Au dessous d’une température critique, la résistivité d’un
supraconducteur devient nulle. Le champ magnétique est expulsé de
l’intérieur du supraconducteur (effet Meissner). Ceci génère une force
magnétique répulsive qui permet au supraconducteur de léviter.

2 Un modèle réduit de train lévite au-dessus d’une voie recouverte
d’aimants par effet Meissner. Le train est entrâıné par un moteur linéaire.
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6.1.2 Transition de phase

Transition de phase : une transition de phase est le passage d’une
phase instable vers une phase stable du système en réponse à un
processus physique.

Transitions de phases principales :

1 Solide → liquide : fusion

2 Liquide → solide : solidification

3 Liquide → gaz : vaporisation

4 Gaz → liquide : condensation

5 Gaz → solide : déposition

6 Solide → gaz : sublimation

Stabilité : l’instabilité d’une phase génère une transition de la phase
instable (initiale) vers la phase stable (finale).

Analogie avec la mécanique : un objet dans un état d’équilibre initial
instable évolue vers un état d’équilibre final stable.

Démarche : pour caractériser les transitions de phase, on étudie les
conditions de stabilité de l’entropie et des potentiels thermodynamiques.
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6.1.2 Expérience - Glace carbonique

Le gaz carbonique est stocké à haute pression dans une bonbonne.
Lorsqu’on ouvre la vanne, il s’échappe de la bonbonne et subit une
détente qui provoque un refroidissement important.

Le refroidissement du gaz carbonique provoque une déposition du CO2

qui transforme le gaz carbonique en glace carbonique à une température
de − 69◦C : c’est une transition de phase de la phase gazeuse à la phase
solide.
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6.1.2 Expérience - Pendule magnétique

1 Un pendule est constitué d’une vis en fer attachée à deux fils métalliques.
A température ambiante, la vis est attirée par un aimant situé derrière
une plaque isolante blanche.

2 On chauffe la vis avec un bec Bunsen. Lorsque la vis atteint une
température de 700◦C, appelée température de Curie, elle subit une
transition de phase de la phase aimantée à la phase non aimantée.

3 En perdant son aimantation, la vis se met à osciller. En refroidissant, elle
subit une transition de phase inverse, de phase non aimantée à la phase
aimantée. Elle est alors à nouveau attirée par l’aimant.
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6.1.2 Expérience - Formation de cristaux

On observe au microscope la formation et la croissance des cristaux. Pour
ce faire on chauffe légèrement avec le pistolet à air chaud les préparations
d’hyposulfite de soude, que l’on laisse refroidir lentement.

Lorsque la température descend au-dessous d’une certaine valeur, la
solution subit une transition de phase qui fait apparâıtre des cristaux
colorés qui croissent et envahissent toute la solution.
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6.2.1 Conditions globales de concavité

Concavité de l’entropie : l’entropie S (U, V ) est une fonction concave
de l’énergie interne U et du volume V dans l’espace des états (U, S, V ).

Processus interne : un système isolé est constitué de deux
sous-systèmes simples 1 et 2 initialement séparés par une paroi. La paroi
est ensuite retirée. Le système devient alors un système simple qui évolue
vers un état d’équilibre final.

Variables d’état :

1 Etat initial : énergie interne et volume (U1, U2, V1, V2)

2 Etat final : énergie interne et volume (2U, 2V )

Premier principe : système isolé : énergie interne et volume constants

U1 + U2 = 2U et V1 + V2 = 2V (6.1)

Deuxième principe : système isolé : entropie tendant vers un maximum

S (U1, V1) + S (U2, V2) ⩽ S (2U, 2V ) (6.2)
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6.2.1 Conditions globales de concavité

1 Energies internes initiales différentes : conditions initiales avec des
énergies internes différentes et des volumes identiques.

U1 = U − ∆U et U2 = U +∆U et V1 = V2 = V (6.3)

Entropie finale : (6.1) et (6.3) grandeur extensive

S (2U, 2V ) = 2S (U, V ) (6.4)

Condition globale de concavité : entropie

S (U1, V1) + S (U2, V2) ⩽ S (2U, 2V ) (6.2)

Condition globale de concavité : (6.3) et (6.4) dans (6.2)

S (U − ∆U, V ) + S (U +∆U, V ) ⩽ 2S (U, V ) (6.5)

La condition globale de concavité (6.5) signifie que l’entropie S (U, V )
est globalement une fonction concave de l’énergie interne U .
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6.2.1 Conditions globales de concavité

Condition globale de concavité de l’entropie : (6.5)

1

2

(
S (U − ∆U, V ) + S (U +∆U, V )

)
< S (U, V ) (6.5)
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6.2.1 Conditions globales de concavité

2 Volumes initiaux différents : conditions initiales avec des énergies
internes identiques et des volumes différents.

U1 = U2 = U et V1 = V − ∆V et V2 = V +∆V (6.6)

Entropie finale : (6.1) et (6.6) grandeur extensive

S (2U, 2V ) = 2S (U, V ) (6.4)

Condition globale de concavité : entropie

S (U1, V1) + S (U2, V2) ⩽ S (2U, 2V ) (6.2)

Condition globale de concavité : (6.6) et (6.4) dans (6.2)

S (U, V − ∆V ) + S (U, V +∆V ) ⩽ 2S (U, V ) (6.7)

La condition globale de concavité (6.7) signifie que l’entropie S (U, V )
est globalement une fonction concave du volume V .
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6.2.1 Conditions globales de concavité

Condition globale de concavité de l’entropie : (6.7)

1

2

(
S (U, V − ∆V ) + S (U, V +∆V )

)
< S (U, V ) (6.7)
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6.2.1 Conditions globales de concavité

3 Energie internes et volumes initiaux différents : conditions initiales

U1 = U − ∆U et U2 = U +∆U

V1 = V − ∆V et V2 = V +∆V
(6.8)

Entropie finale : (6.1) et (6.8) grandeur extensive

S (2U, 2V ) = 2S (U, V ) (6.4)

Condition globale de concavité : entropie

S (U1, V1) + S (U2, V2) ⩽ S (2U, 2V ) (6.2)

Condition globale de concavité : (6.8) et (6.4) dans (6.2)

S (U − ∆U, V − ∆V ) + S (U +∆U, V +∆V ) ⩽ 2S (U, V ) (6.9)

La condition globale de concavité (6.9) signifie que l’entropie S (U, V ) est
globalement une fonction concave de l’énergie interne U et du volume V .
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6.2.2 Conditions locales de concavité

Conditions locales : pour décrire des transitions de phase, caractérisées
par des discontinuités des dérivées partielles des variables d’état U , S et
V , il est nécessaire de déterminer également les conditions locales de
concavité de l’entropie S.

Conditions locales et globales : les conditions locales sont définies
dans le voisinage d’un point dans l’espace des états (U, S, V ), alors que
les conditions globales sont définies sur tout l’espace. Les conditions
locales de concavité, qui doivent être satisfaites pour ∆U → 0 et
∆V → 0, sont moins restrictives que les conditions globales de concavité
qui doivent être satisfaites pour tout ∆U et ∆V .

Condition globale de concavité de l’entropie : S par rapport à U

S (U − ∆U, V ) + S (U +∆U, V ) ⩽ 2S (U, V ) (6.5)

Développement limité de l’entropie : au deuxième ordre en ∆U
autour de S (U, V )

S (U ±∆U, V ) ≃ S (U, V )± ∂S (U, V )

∂U
∆U +

1

2!

∂2S (U, V )

∂U2
∆U2 (6.8)
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6.2.2 Conditions locales de concavité

Condition locale de concavité de l’entropie : (6.10)

lim
∆U→0

1

∆U2

(
S (U − ∆U, V ) + S (U +∆U, V )− 2S (U, V )

)
⩽ 0

Condition locale de concavité de l’entropie : (6.8) dans (6.10)

lim
∆U→0

1

∆U2

(
∂2S (U, V )

∂U2
∆U2

)
⩽ 0

Condition globale de concavité de l’entropie : S par rapport à V

S (U, V − ∆V ) + S (U, V +∆V ) ⩽ 2S (U, V ) (6.7)

Développement limité de l’entropie : au deuxième ordre en ∆V
autour de S (U, V )

S (U, V ±∆V ) ≃ S (U, V )± ∂S (U, V )

∂V
∆V +

1

2!

∂2S (U, V )

∂V 2
∆V 2 (6.9)

Condition locale de concavité de l’entropie : (6.11)

lim
∆V→0

1

∆V 2

(
S (U, V − ∆V ) + S (U, V +∆V )− 2S (U, V )

)
⩽ 0
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6.2.2 Conditions locales de concavité

Condition locale de concavité de l’entropie : (6.9) dans (6.11)

lim
∆V→0

1

∆V 2

(
∂2S (U, V )

∂V 2
∆V 2

)
⩽ 0

Conditions locales de concavité de l’entropie :

∂2S (U, V )

∂U2
⩽ 0 et

∂2S (U, V )

∂V 2
⩽ 0 (6.12)

Courbure de Gauss positive : de la surface S (U, V ) dans l’espace des
états (U, S, V )

∂2S (U, V )

∂U2

∂2S (U, V )

∂V 2
−
(
∂2S (U, V )

∂U ∂V

)2

⩾ 0 (6.13)

En application, on établira la condition (6.13) en faisant un dévelop-
pement limité au 2e ordre en ∆U et ∆V de la condition globale de
concavité (6.9).
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6.2.2 Conditions locales de concavité

Courbure de Gauss : déterminant de la matrice hessienne de l’entropie

det
(
H (S)

)
=

∣∣∣∣∣∣∣∣∣
∂2S (U, V )

∂U2

∂2S (U, V )

∂U ∂V

∂2S (U, V )

∂V ∂U

∂2S (U, V )

∂V 2

∣∣∣∣∣∣∣∣∣ ⩾ 0 (6.14)
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6.3 Convexité de l’énergie interne
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6.3.1 Conditions globales de convexité
6.3.2 Conditions locales de convexité
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6.3.1 Conditions globales de convexité

Convexité de l’énergie interne : l’énergie interne U (S, V ) est une
fonction convexe de l’entropie S et du volume V dans l’espace des états
(U, S, V ).

Processus interne : un système isolé est constitué de deux
sous-systèmes simples 1 et 2 initialement séparés par une paroi. La paroi
est ensuite retirée. Le système devient alors un système simple qui évolue
vers un état d’équilibre final.

Variables d’état :

1 Etat initial : entropie et volume (S1, S2, V1, V2)

2 Etat final : entropie et volume (2S, 2V )

Système isolé : premier principe

U1 (S1, V1) + U2 (S2, V2) = U (2S, 2V ) (6.15)

Condition de concavité de l’entropie : deuxième principe

S1 (U1, V1) + S2 (U2, V2) ⩽ 2S (U, V ) (6.16)
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6.3.1 Conditions globales de convexité

Système isolé : premier principe

U1 (S1, V1) + U2 (S2, V2) = U (2S, 2V ) (6.15)

Condition de concavité de l’entropie : deuxième principe

S1 (U1, V1) + S2 (U2, V2) ⩽ 2S (U, V ) (6.16)

Energie interne : fonction croissante de l’entropie et fct. du volume

U
(
S1 (U1, V1) + S2 (U2, V2) , V1 + V2

)
⩽ U

(
2S (U, V ) , 2V

)
(6.17)

Energie interne : écriture allégée (6.17)

U (2S, 2V ) ⩾ U (S1 + S2, V1 + V2) (6.18)

Condition de convexité de l’énergie interne : (6.15) dans (6.18)

U1 (S1, V1) + U2 (S2, V2) ⩾ U (S1 + S2, V1 + V2) (6.19)
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6.3.1 Conditions globales de convexité

1 Entropies initiales différentes : conditions initiales avec des entropies
différentes et des volumes identiques.

S1 = S − ∆S et S2 = S +∆S et V1 = V2 = V

Energie interne finale : grandeur extensive

U (S1 + S2, V1 + V2) = U (2S, 2V ) = 2U (S, V ) (6.20)

Condition globale de convexité : énergie interne

U (S1, V1) + U (S2, V2) ⩾ U (S1 + S2, V1 + V2) (6.19)

Condition globale de convexité : (6.20) dans (6.19)

U (S − ∆S, V ) + U (S +∆S, V ) ⩾ 2U (S, V ) (6.21)

La condition globale de concavité (6.21) signifie que l’énergie interne
U (S, V ) est globalement une fonction convexe de l’entropie S.
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6.3.1 Conditions globales de convexité

Condition globale de convexité de l’énergie interne :

1

2

(
U (S − ∆S, V ) + U (S +∆S, V )

)
> U (S, V ) (6.21)
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6.3.1 Conditions globales de convexité

2 Volumes initiaux différents : conditions initiales avec des entropies
identiques et des volumes différents.

S1 = S2 = S et V1 = V − ∆V et V2 = V +∆V

Energie interne finale : grandeur extensive

U (S1 + S2, V1 + V2) = U (2S, 2V ) = 2U (S, V ) (6.20)

Condition globale de convexité : énergie interne

U (S1, V1) + U (S2, V2) ⩾ U (S1 + S2, V1 + V2) (6.19)

Condition globale de convexité : (6.20) dans (6.19)

U (S, V − ∆V ) + U (S, V +∆V ) ⩾ 2U (S, V ) (6.22)

La condition globale de convexité (6.22) signifie que l’énergie interne
U (S, V ) est globalement une fonction convexe du volume V .
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6.3.1 Conditions globales de convexité

Condition globale de convexité de l’énergie interne :

1

2

(
U (S, V − ∆V ) + U (S, V +∆V )

)
> U (S, V ) (6.22)
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6.3.1 Conditions globales de convexité

3 Entropies et volumes initiaux différents : conditions initiales

S1 = S − ∆S et S2 = S +∆S

V1 = V − ∆V et V2 = V +∆V

Energie interne finale : grandeur extensive

U (S1 + S2, V1 + V2) = U (2S, 2V ) = 2U (S, V ) (6.20)

Condition globale de convexité : énergie interne

U (S1, V1) + U (S2, V2) ⩾ U (S1 + S2, V1 + V2) (6.19)

Condition globale de convexité : (6.20) dans (6.19)

U (S − ∆S, V − ∆V ) + U (S +∆S, V +∆V ) ⩾ 2U (S, V ) (6.23)

La condition globale de convexité (6.23) signifie que l’énergie interne
U (S, V ) est globalement une fonction convexe de l’entropie S et du
volume V .
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6.3.2 Conditions locales de convexité

Conditions locales : pour décrire des transitions de phase, caractérisées
par des discontinuités des dérivées partielles des variables d’état U , S et
V , il est nécessaire de déterminer également les conditions locales de
convexité de l’énergie interne U .

Conditions locales et globales : les conditions locales sont définies
dans le voisinage d’un point dans l’espace des états (U, S, V ), alors que
les conditions globales sont définies sur tout l’espace. Les conditions
locales de convexité, qui doivent être satisfaites pour ∆S → 0 et
∆V → 0, sont moins restrictives que les conditions globales de convexité
qui doivent être satisfaites pour tout ∆S et ∆V .

Condition globale de convexité de l’énergie interne : U par rap. à S

U (S − ∆S, V ) + U (S +∆S, V ) ⩾ 2U (S, V ) (6.21)

Développement limité de l’énergie interne : au deuxième ordre en
∆S autour de U (S, V )

U (S ±∆S, V ) ≃ U (S, V )± ∂U (S, V )

∂S
∆S +

1

2!

∂2U (S, V )

∂S2
∆S2 (6.A)
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6.3.2 Conditions locales de convexité

Condition locale de convexité de l’énergie interne : (6.B)

lim
∆S→0

1

∆S2

(
U (S − ∆S, V ) + U (S +∆S, V )− 2U (S, V )

)
⩾ 0

Condition locale de convexité de l’énergie interne : (6.A) dans (6.B)

lim
∆S→0

1

∆S2

(
∂2U (S, V )

∂S2
∆S2

)
⩾ 0

Condition globale de convexité de l’énergie interne : U par rap. à V

U (S, V − ∆V ) + U (S, V +∆V ) ⩾ 2U (S, V ) (6.22)

Développement limité de l’énergie interne : au deuxième ordre en
∆V autour de U (S, V )

U (S, V ±∆V ) ≃ U (S, V )± ∂U (S, V )

∂V
∆V +

1

2!

∂2U (S, V )

∂V 2
∆V 2 (6.C)

Condition locale de convexité de l’énergie interne : (6.D)

lim
∆V→0

1

∆V 2

(
U (S, V − ∆V ) + U (S, V +∆V )− 2U (S, V )

)
⩾ 0
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6.3.2 Conditions locales de convexité

Condition locale de convexité de l’énergie interne : (6.C) dans (6.D)

lim
∆V→0

1

∆V 2

(
∂2U (S, V )

∂V 2
∆V 2

)
⩾ 0

Conditions locales de convexité de l’énergie interne :

∂2U (S, V )

∂S2
⩾ 0 et

∂2U (S, V )

∂V 2
⩾ 0 (6.24)

Courbure de Gauss positive : de la surface U (S, V ) dans l’espace des
états (U, S, V )

∂2U (S, V )

∂S2

∂2U (S, V )

∂V 2
−
(
∂2U (S, V )

∂S ∂V

)2

⩾ 0 (6.25)

En application, on établira la condition (6.25) en faisant un dévelop-
pement limité au 2e ordre en ∆S et ∆V de la condition globale de
convexité (6.23).
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6.3.2 Conditions locales de convexité

Courbure de Gauss : dét. de la matrice hessienne de l’énergie interne

det
(
H (U)

)
=

∣∣∣∣∣∣∣∣∣
∂2U (S, V )

∂S2

∂2U (S, V )

∂S ∂V

∂2U (S, V )

∂V ∂S

∂2U (S, V )

∂V 2

∣∣∣∣∣∣∣∣∣ ⩾ 0 (6.26)
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6.4 Stabilité et entropie

6.4 Stabilité et entropie
6.4.1 Critères de stabilité de l’entropie
6.4.2 Etats stables tangents à l’entropie
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6.4.1 Critères de stabilité de l’entropie

Entropie et stabilité : la stabilité d’une quantité de matière dans un
certain état dépend du signe de la courbure de l’entropie S (U, V ) par
rapport aux variables d’état énergie interne U et volume V dans l’espace
des états (U, S, V ).

Critères de stabilité de l’entropie :

1 Critère de stabilité par rapport à l’énergie interne : on choisit une
équation d’état S (U, V ) telle que la dérivée partielle seconde de l’entropie
S par rapport à l’énergie interne U change de signe en fonction de la
valeur de U .

2 Critère de stabilité par rapport au volume : on choisit une équation
d’état S (U, V ) telle que la dérivée partielle seconde de l’entropie S par
rapport au volume V change de signe en fonction de la valeur de V .

Démarche : on établit d’abord le critère de stabilité de l’entropie
S (U, V ) par rapport à l’énergie interne U . Le critère de stabilité par
rapport au volume V est alors obtenu de manière analogue en remplaçant
U par V .
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6.4.1 Stabilité et entropie

Critère de stabilité locale de l’entropie : états stables

∂2S (U, V )

∂U2
⩽ 0 (courbure locale négative ou nulle) (6.12)

1 Stable : du point 0 au point A (point d’inflexion) et du point C (point
d’inflexion) au point 3 car le critère de stabilité locale (6.12) est satisfait.

2 Instable : du point A au point C car le critère de stabilité locale (6.12)
n’est pas satisfait.
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6.4.2 Etats stables tangents à l’entropie

Critère de stabilité globale de l’entropie : états stables

S (U − ∆U, V ) + S (U +∆U, V ) ⩽ 2S (U, V ) (6.7)

(courbure globale négative ou nulle)

1 Stable : du point 0 au point 1 (point de tangence) et du point 2 (point de
tangence) au point 3 car le critère de stabilité globale (6.26) est satisfait.

2 Instable : du point 1 au point 2 car le critère de stabilité globale (6.26)
n’est pas satisfait.
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6.4.2 Etats stables tangents à l’entropie

Limite de stabilité locale : courbure nulle : segment de droite

∂2S (U, V )

∂U2
= 0 (6.27)

Limite de stabilité globale : tangente à S entre 1 et 2 où λ ∈ [ 0, 1 ]

S (U, V ) = S (U1, U2, V1, V2, λ) = (1− λ)S (U1, V1)+λS (U2, V2) (6.28)

Transition de phase : la tangente représente une transition d’une phase
α où U ⩽ U1 et S ⩽ S1 à une phase β où U ⩾ U2 et S ⩾ S2.
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6.5 Stabilité et potentiels thermodynamiques

6.5 Stabilité et potentiels thermodynamiques
6.5.1 Critères de stabilité de l’énergie interne
6.5.2 Etats stables tangents à l’énergie interne
6.5.3 Température et pression d’une transition de phase
6.5.4 Critères de stabilité des potentiels thermodynamiques
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6.5.1 Critères de stabilité de l’énergie interne

Energie interne et stabilité : la stabilité d’une quantité de matière dans
un certain état dépend du signe de la courbure de l’énergie interne
U (S, V ) par rapport aux variables d’état entropie S et volume V dans
l’espace des états (U, S, V ).

Critères de stabilité de l’énergie interne :

1 Critère de stabilité par rapport à l’entropie : on choisit une équation
d’état U (S, V ) telle que la dérivée partielle seconde de l’énergie interne U
par rapport à l’entropie S change de signe en fonction de la valeur de S.

2 Critère de stabilité par rapport au volume : on choisit une équation
d’état U (S, V ) telle que la dérivée partielle seconde de l’énergie interne U
par rapport au volume V change de signe en fonction de la valeur de V .

Démarche : on établit d’abord le critère de stabilité de l’énergie interne
U (S, V ) par rapport à l’entropie S. Le critère de stabilité par rapport au
volume V est alors obtenu de manière analogue en remplaçant S par V .
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6.5.1 Critères de stabilité de l’énergie interne

Critère de stabilité locale de l’énergie interne : états stables

∂2U (S, V )

∂S2
⩾ 0 (courbure locale positive ou nulle) (6.15)

1 Stable : du point 0 au point A (point d’inflexion) et du point C (point
d’inflexion) au point 3 car le critère de stabilité locale (6.15) est satisfait.

2 Instable : du point A au point C car le critère de stabilité locale (6.15)
n’est pas satisfait.
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6.5.2 Etats stables tangents à l’énergie interne

Critère de stabilité globale de l’énergie interne : états stables

U (S − ∆S, V ) + U (S +∆S, V ) ⩾ 2U (S, V ) (6.29)

(courbure globale positive ou nulle)

1 Stable : du point 0 au point 1 (point de tangence) et du point 2 (point de
tangence) au point 3 car le critère de stabilité globale (6.29) est satisfait.

2 Instable : du point 1 au point 2 car le critère de stabilité globale (6.29)
n’est pas satisfait.
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6.5.2 Etats stables tangents à l’énergie interne

Limite de stabilité locale : courbure nulle : segment de droite

∂2U (S, V )

∂S2
= 0 (6.30)

Limite de stabilité globale : tangente à U entre 1 et 2 où λ ∈ [ 0, 1 ]

U (S, V ) = U (S1, S2, V1, V2, λ) = (1− λ)U(S1, V1)+λU(S2, V2) (6.31)

Transition de phase : la tangente représente une transition d’une phase
α où S ⩽ S1 et U ⩽ U1 à une phase β où S ⩾ S2 et U ⩾ U2. Cette
transition de phase a lieu à température T et pression p constantes.
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6.5.3 Température et pression d’une transition de phase

a

b

a + b

a

b

a + b

Température : transition de phase α ↔ β : pente constante de la ligne
de coexistence des phases α et β sur le diagramme US :

T =
∂U (S, V )

∂S
=

U (S2, V2)− U (S1, V1)

S2 − S1
=

U2 − U1

S2 − S1
= cste (6.32)

Pression : transition de phase α ↔ β : opposé de la pente constante de
la ligne de coexistence des phases α et β sur le diagramme UV : (6.33)

p = − ∂U (S, V )

∂V
= − U (S2, V2)− U (S1, V1)

V2 − V1
= − U2 − U1

V2 − V1
= cste
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6.5.4 Critères de stabilité des potentiels thermodynamiques

Convexité locale de l’énergie interne : (5.10) dans (6.15)

∂2U (S, V )

∂S2
=

∂T (S, V )

∂S
= T

(
T

∂S (T, V )

∂T

)−1

=
T

CV
⩾ 0 (6.34)

Capacité thermique isochore : (6.34)

CV ⩾ 0 (6.35)

Convexité locale de l’énergie interne : (5.25) dans (6.22) : (6.34)

∂2U (S, V )

∂V 2
= − ∂p (S, V )

∂V
=

1

V

(
− 1

V

∂V (S, p)

∂p

)−1

=
1

χS V
⩾ 0

Coefficient de compressibilité isentropique : (6.34)

χS ⩾ 0 (6.36)

Relations de Mayer et de Reech : (5.39) et (5.53)

Cp (Cp − CV ) =
α2
p CV

χS
T V ⩾ 0 (6.37)
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6.5.4 Critères de stabilité des potentiels thermodynamiques

Relations de Mayer et de Reech :

Cp (Cp − CV ) =
α2
p CV

χS
T V ⩾ 0 (6.37)

1 Solution physique : cohérente

Cp ⩾ CV ⩾ 0

2 Solution mathématique : incohérente

Cp ⩽ 0 et CV ⩾ 0 ainsi si C = CV = Cp alors C = 0

Capacité thermique isobare :

Cp ⩾ CV ⩾ 0 (6.38)

Coefficient de compressibilité isotherme : (6.36) et (6.38) dans (5.53)

χT =
Cp

CV
χS ⩾ χS ⩾ 0 (6.39)
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6.5.4 Critères de stabilité des potentiels thermodynamiques

Concavité locale de l’énergie libre : (5.10) et (6.35) : (6.40)

∂2F (T, V )

∂T 2
= − ∂S (T, V )

∂T
= − 1

T

(
T

∂S (T, V )

∂T

)
= − CV

T
⩽ 0

Convexité locale de l’énergie libre : (5.12) et (6.39) : (6.40)

∂2F (T, V )

∂V 2
= − ∂p (T, V )

∂V
=

1

V

(
− 1

V

∂V (T, p)

∂p

)−1

=
1

χT V
⩾ 0

Courbure de Gauss négative : surface F (T, V ) dans l’espace des états

∂2F (T, V )

∂T 2

∂2F (T, V )

∂V 2
−
(
∂2F (T, V )

∂T ∂V

)2

⩽ 0 (6.41)
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6.5.4 Critères de stabilité des potentiels thermodynamiques

Courbure de Gauss : déterminant de la matrice hessienne de l’énergie
libre

det
(
H (F )

)
=

∣∣∣∣∣∣∣∣∣
∂2F (T, V )

∂T 2

∂2F (T, V )

∂T ∂V

∂2F (T, V )

∂V ∂T

∂2F (T, V )

∂V 2

∣∣∣∣∣∣∣∣∣ ⩽ 0 (6.42)
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6.5.4 Critères de stabilité des potentiels thermodynamiques

Convexité locale de l’enthalpie : (5.22) et (6.38) : (6.43)

∂2H (S, p)

∂S2
=

∂T (S, p)

∂S
= T

(
T

∂S (T, p)

∂T

)−1

=
T

Cp
⩾ 0

Concavité locale de l’enthalpie : (5.52) et (6.36) : (6.43)

∂2H (S, p)

∂p2
=

∂V (S, p)

∂p
= −V

(
− 1

V

∂V (S, p)

∂p

)
= −χS V ⩽ 0

Courbure de Gauss négative : surface H (S, p) dans l’espace des états

∂2H (S, p)

∂S2

∂2H (S, p)

∂p2
−
(
∂2H (S, p)

∂S ∂p

)2

⩽ 0 (6.44)
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6.5.4 Critères de stabilité des potentiels thermodynamiques

Courbure de Gauss : déterminant de la matrice hessienne de l’enthalpie

det
(
H (H)

)
=

∣∣∣∣∣∣∣∣∣∣
∂2H (S, p)

∂S2

∂2H (S, p)

∂S ∂p

∂2H (S, p)

∂p ∂S

∂2H (S, p)

∂p2

∣∣∣∣∣∣∣∣∣∣
⩽ 0 (6.45)
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6.5.4 Critères de stabilité des potentiels thermodynamiques

Concavité locale de l’énergie libre de Gibbs : (5.22) et (6.38) : (6.46)

∂2G (T, p)

∂T 2
= − ∂S (T, p)

∂T
= − 1

T

(
T

∂S (T, p)

∂T

)
= − Cp

T
⩽ 0

Concavité locale de l’énergie libre de Gibbs : (5.12) et (6.39) : (6.46)

∂2G (T, p)

∂p2
=

∂V (T, p)

∂p
= −V

(
− 1

V

∂V (T, p)

∂p

)
= −χT V ⩽ 0

Courbure de Gauss positive : surface G (T, p) dans l’espace des états

∂2G (T, p)

∂T 2

∂2G (T, p)

∂p2
−
(
∂2G (T, p)

∂T ∂p

)2

⩾ 0 (6.47)
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6.5.4 Critères de stabilité des potentiels thermodynamiques

Courbure de Gauss : déterminant de la matrice hessienne de l’énergie
libre de Gibbs

det
(
H (G)

)
=

∣∣∣∣∣∣∣∣∣∣
∂2G (T, p)

∂T 2

∂2G (T, p)

∂T ∂p

∂2G (T, p)

∂p ∂T

∂2G (T, p)

∂p2

∣∣∣∣∣∣∣∣∣∣
⩾ 0 (6.48)
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6.5.4 Critères de stabilité des potentiels thermodynamiques

Courbure locale de l’énergie interne :

∂2U (S, V )

∂S2
⩾ 0 et

∂2U (S, V )

∂V 2
⩾ 0 (6.15)

Courbure locale de l’énergie libre :

∂2F (T, V )

∂T 2
⩽ 0 et

∂2F (T, V )

∂V 2
⩾ 0 (6.40)

Courbure locale de l’enthalpie :

∂2H (S, p)

∂S2
⩾ 0 et

∂2H (S, p)

∂p2
⩽ 0 (6.43)

Courbure locale de l’énergie libre de Gibbs :

∂2G (T, p)

∂T 2
⩽ 0 et

∂2G (T, p)

∂p2
⩽ 0 (6.46)

Les potentiels thermodynamiques U (S, V ), F (T, V ), H (S, p) et
G (T, p) sont des fonctions convexes de leurs variables d’état extensives V
et S et des fonctions concaves de leurs variables d’état intensives T et p.
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6.6 Transitions de phase

6.6 Transitions de phase
6.6.1 Types de transition de phase
6.6.2 Phases et coexistence de phase
6.6.3 Transitions de phases - solide, liquide et gaz
6.6.4 Diagramme de phases - solide, liquide et gaz
6.6.5 Point critique et phase fluide
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6.6.1 Types de transition de phase

Phase : une phase est un état de la matière qui occupe un sous-espace
de l’espace des états caractérisé par des propriétés physiques particulières
du système, noté avec des lettres grecques (α, β, etc...)

Transition de phase : une transition de phase est le passage d’une phase
instable vers une phase stable du système en réponse à un processus.

Classification d’Ehrenfest : deux types de transitions de phase

1 Transitions de phase du premier ordre : elles sont caractérisées par des
discontinuités des dérivées premières de l’énergie libre de Gibbs G,
c’est-à-dire l’entropie S et le volume V . C’est le cas des transitions de
phase entre les états solide, liquide et gazeux.

S (T, p) = − ∂G (T, p)

∂T
et V (T, p) =

∂G (T, p)

∂p

2 Transitions de phase du deuxième ordre : elles sont caractérisées par
des discontinuités des dérivées secondes de l’énergie libre de Gibbs G,
c’est-à-dire la capacité thermique isobare Cp et le coefficient de
compressibilité isotherme χT . C’est le cas des transitions de phase entre
les états liquide et gazeux passant par le point critique.

Cp = −T
∂2G (T, p)

∂T 2
et χT = − 1

V

∂2G (T, p)

∂p2
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6.6.2 Phases et coexistence de phase

a

b

a + b

Diagramme : US : énergie interne - entropie : V = cste

1 Phase pure : (α) courbe entre (0, 0) et (U1, S1)

2 Phase pure : (β) courbe entre (U2, S2) et (∞,∞)

3 Coexistence de phases : (α et β) ligne entre (U1, S1) et (U2, S2)

U (S, V ) = U (S1, S2, V1, V2, λ) = (1− λ)U(S1, V1) + λU(S2, V2) (6.31)

La proportion de chaque phase est donnée par une combinaison linéaire en
fonction du paramètre λ ∈ [ 0, 1 ].

4 Température : transition de phase : pente de la ligne de coexistence

T =
∂U (S, V )

∂S
=

U (S2, V2)− U (S1, V1)

S2 − S1
=

U2 − U1

S2 − S1
= cste (6.32)
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6.6.2 Phases et coexistence de phase

a

b

a + b

Diagramme : UV : énergie interne - volume : S = cste

1 Phase pure : (α) courbe entre (0, 0) et (U1, V1)

2 Phase pure : (β) courbe entre (U2, V2) et (∞,∞)

3 Coexistence de phases : (α et β) ligne entre (U1, V1) et (U2, V2)

U (S, V ) = U (S1, S2, V1, V2, λ) = (1− λ)U(S1, V1) + λU(S2, V2) (6.31)

La proportion de chaque phase est donnée par une combinaison linéaire en
fonction du paramètre λ ∈ [ 0, 1 ].

4 Pression : transition de phase : − pente de la ligne de coexistence

p =−∂U (S, V )

∂V
=−U (S2, V2)− U (S1, V1)

V2 − V1
=−U2 − U1

V2 − V1
= cste (6.33)
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6.6.3 Transitions de phases - solide, liquide et gaz

Solide Liquide Gaz LiquideGaz Solide

A température T et pression p fixées, l’état d’équilibre stable minimise
l’énergie libre de Gibbs G : dG (T, p, {Nα}) ⩽ 0 (4.70)

G (T, p, {Nα}) =
∑
α

Gα (T, p,Nα) =
∑
α

µα (T, p,Nα)Nα (6.49)

1 Phase solide : à température T < Tf et à pression p > pf , l’état stable
qui minimise l’énergie libre de Gibbs G est l’état solide.

2 Phase liquide : à température Tf < T < Tv et à pression pv < p < pf ,
l’état stable qui minimise l’énergie libre de Gibbs G est l’état liquide.

3 Phase gazeuse : à température T > Tv et à pression p < pv, l’état stable
qui minimise l’énergie libre de Gibbs G est l’état gazeux.
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6.6.3 Transitions de phases - solide, liquide et gaz

Solide Liquide Gaz LiquideGaz Solide

Concavité de l’énergie libre de Gibbs : Cp ⩾ 0 et χT ⩾ 0 phase α

∂2Gα (T, p,Nα)

∂T 2
⩽ 0 et

∂2Gα (T, p,Nα)

∂p2
⩽ 0 (6.50)

Pentes des diagrammes : entropie et le volume

Sα (T, p,Nα) = − ∂Gα (T, p,Nα)

∂T
> 0

Vα (T, p,Nα) =
∂Gα (T, p,Nα)

∂p
> 0

(6.51)

Discontinuité des pentes : transitions de phase du premier ordre

Ss < Sℓ < Sg et Vs < Vℓ < Vg (excepté H2O) (6.52)
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6.6.4 Diagramme de phases - solide, liquide et gaz

A température T et pression p fixées, l’état d’équilibre stable minimise
l’énergie libre de Gibbs G : dG (T, p, {Nα}) ⩽ 0 (4.70)

µα (T, p,Nα) =
∂Gα (T, p,Nα)

∂Nα
(4.43)

La phase stable α ∈ {s, ℓ, g} est celle dont le potentiel chimique µα est
minimal.

Diagramme de phases : (p, T )

1 Domaine de phase solide : α = s

µs ⩽ µℓ et µs ⩽ µg (6.54)

2 Domaine de phase liquide : α = ℓ

µℓ ⩽ µg et µℓ ⩽ µs (6.55)

3 Domaine de phase gazeuse : α = g

µg ⩽ µs et µg ⩽ µℓ (6.56)
T

Point triple

Point critique

Gaz

p

Solide Liquide
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6.6.4 Diagramme de phases - solide, liquide et gaz

1 Courbe de coexistence de phase :

µs = µℓ < µg (6.57)

2 Courbe de coexistence de phase :

µℓ = µg < µs (6.58)

3 Courbe de coexistence de phase :

µs = µg < µℓ (6.59)

4 Point triple :

µs = µℓ = µg (6.60)
T

Point triple

Point critique

Gaz

p

Solide Liquide

Points triples : pour une substance donnée, il peut y avoir plusieurs
phases solides ou liquides, et donc plusieurs points triples, mais il n’y a
qu’une seule phase gazeuse.

Point critique : au-delà d’une température Tc et d’une pression pc, la
courbe de coexistence de phase entre les phases liquide et gazeuse
s’arrête brusquement en un point appelé le point critique.
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6.6.4 Expérience - Diagramme de phase (p,T)

Diagramme de phase : (p, T ) - la phase solide est rouge, la phase
liquide est bleue, la phase gazeuse est orange et la phase fluide est jaune.

1 Gaz parfait : une phase gazeuse unique (le gaz est un fluide parfait).

2 CO2 : la courbe de coexistence des phases solide et liquide a une pente
positive. L’isotherme à température critique est la courbe noire.

3 H2O : la courbe de coexistence des phases solide et liquide a une pente
négative (anomalie). L’isotherme à température critique est la courbe
noire.
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6.6.4 Expérience - Point triple de l’azote

Le point triple de l’azote moléculaire N2 est un point du digramme de
phase (T, p) défini par une pression pt = 12.6 kPa et une température de
Tt = − 210◦C.

Au point triple, les trois phases de l’azote moléculaire coexistent. La
phase solide s, la phase liquide ℓ et la phase gazeuse g sont à l’équilibre
chimique : µs = µℓ = µg.
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6.6.5 Point critique et phase fluide

T

Point triple

Point critique

Gaz

p

Solide Liquide

Transitions de phases : liquide-gaz

1 Température sous-critique : (T < Tc) transition de phase du premier
ordre à travers la courbe de coexistence de phase (discontinuité du volume
et de l’entropie).

2 Température critique : (T = Tc) transition de phase du deuxième ordre à
travers le point critique (continuité du volume et de l’entropie).

3 Température surcritique : (T > Tc) pas de transition de phase au-delà
du point critique.

Phase fluide : le liquide et le gaz forment une seule phase fluide.
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6.6.5 Expérience - Point critique d’un gaz réel

On remplit une cellule vitrée d’une subtance que l’on peut chauffer et
comprimer.

1 On observe une transition de phase entre la phase gazeuse et la phase
liquide en régime de température sous-critique (T < Tc).

2 On n’observe pas de transition de phase dans le fluide en régime de
température surcritique (T > Tc).

3 Au point critique (T = Tc), on a un mélange complet des phases liquide
et gazeuse dont les indices de réfraction sont différents. La lumière ne
parvient plus à traverser la substance : c’est l’opalescence critique.
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6.7 Chaleur latente

6.7 Chaleur latente
6.7.1 Chaleur latente de fusion et de vaporisation
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6.7.1 Chaleur latente de fusion et de vaporisation

Chaleur latente : chaleur fournie à la substance lors d’un processus à
température constante d’un état initial i à un état final f .

Qi→f =

∫ f

i

δQ = T

∫ Sf

Si

dS = T (Sf − Si) = T ∆Si→f (2.41)

Chaleur latente de transition de phase : chaleur Qα→β fournie à la
substance lors d’une transition de phase à température T constante d’une
phase initiale α à une phase finale β.

Qα→β =

∫ β

α

δQ = T

∫ Sβ

Sα

dS = T (Sβ − Sα) = T ∆Sα→β (6.61)

1 Chaleur latente de fusion : chaleur Qs→ℓ fournie à la substance lors de
la fusion à température Tf .

Qs→ℓ = Tf (Sℓ − Ss) (6.62)

2 Chaleur latente de vaporisation : chaleur Qℓ→g fournie à la substance
lors de la vaporisation à température Tv.

Qℓ→g = Tv (Sg − Sℓ) (6.62)
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6.7.1 Chaleur latente de fusion et de vaporisation

Transition de phase : α → β

1 Nα→β : nombre de moles effectuant la transition de phase α → β

2 Nα : nombre de moles dans la phase initiale α

3 Nβ : nombre de moles dans la phase finale β

Bilan : de transition de phase

Nα→β = Nα = Nβ (6.63)

Chaleur latente : de transition de phase par mole (6.61) / (6.63)

Qα→β

Nα→β
= T

(
Sβ

Nβ
− Sα

Nα

)
(6.64)

Chaleur latente molaire : de transition de phase

ℓα→β =
Qα→β

Nα→β
(6.65)

Entropies molaires :

sα =
Sα

Nα
et sβ =

Sβ

Nβ
(6.66)
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6.7.1 Chaleur latente de fusion et de vaporisation

Chaleur latente molaire : de transition de phase α → β
(6.65) et (6.66) dans (6.64)

ℓα→β = T (sβ − sα) (6.67)

Notation : lettres minuscules pour les grandeurs densitaires (molaires,
volumiques, massiques).

1 Chaleur latente molaire de fusion : chaleur fournie à une mole de
substance lors de la fusion à température Tf .

ℓs→ℓ = Tf (sℓ − ss) (6.68)

2 Chaleur latente molaire de vaporisation : chaleur fournie à une mole
de substance lors de la vaporisation à température Tv.

ℓℓ→g = Tv (sg − sℓ) (6.68)
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6.7.1 Chaleur latente de fusion et de vaporisation

K

(J.K–1.mol–1)

100 200

500

0

273

373

H2O

1 Chaleur latente molaire de fusion de la glace : surface rectangulaire
bleu clair à température de fusion Tf = 273 K

(ℓs→ℓ)H2O
= Tf (sℓ − ss) = 6 · 103 J ·mol−1

2 Chaleur latente molaire de vaporisation de l’eau : surface
rectangulaire bleu foncé à température de vaporisation Tv = 373 K

(ℓℓ→g)H2O
= Tv (sg − sℓ) = 4 · 104 J ·mol−1
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6.8 Relation de Clausius-Clapeyron

6.8 Relation de Clausius-Clapeyron
6.8.1 Relation de Clausius-Clapeyron
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6.8.1 Relation de Clausius-Clapeyron

Coexistence de phase : équilibre chimique entre les phases α et β

µα (T, p) = µβ (T, p) (6.75)

Différentielle du potentiel chimique : courbe de coexistence de phase

dµα (T, p) = dµβ (T, p) (6.76)

Relations de Gibbs-Duhem : phases α et β

Sα dT − Vα dp+Nα dµα = 0

Sβ dT − Vβ dp+Nβ dµβ = 0
(4.9)

Entropie et volume molaires : grandeurs densitaires

sα =
Sα

Nα
et sβ =

Sβ

Nβ
et vα =

Vα

Nα
et vβ =

Vβ

Nβ

Relations de Gibbs-Duhem molaires : phases α et β

dµα (T, p) = − sα dT + vα dp

dµβ (T, p) = − sβ dT + vβ dp
(6.77)
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6.8.1 Relation de Clausius-Clapeyron

Différentielle du potentiel chimique : courbe de coexistence de phase

dµα (T, p) = dµβ (T, p) (6.76)

Relations de Gibbs-Duhem molaires : phases α et β

dµα (T, p) = − sα dT + vα dp

dµβ (T, p) = − sβ dT + vβ dp
(6.77)

Courbe de coexistence de phase : (6.77) dans (6.76)

− sα dT + vα dp = − sβ dT + vβ dp (6.78)

Courbe de coexistence de phase : (6.78) remise en forme

− (sβ − sα) dT + (vβ − vα) dp = 0 (6.79)

Courbe de coexistence de phase : pente diagramme (p, T )

dp

dT
=

sβ − sα
vβ − vα

(6.80)
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6.8.1 Relation de Clausius-Clapeyron

Courbe de coexistence de phase : pente diagramme (p, T )

dp

dT
=

sβ − sα
vβ − vα

(6.80)

Chaleurs latentes molaires de transition de phase : (6.67)

ℓα→β = T (sβ − sα) (6.81)

Relation de Clausius-Clapeyron : (6.81) dans (6.80)

dp

dT
=

ℓα→β

T (vβ − vα)
(6.82)

Relations de Clausius-Clapeyron : fusion et vaporisation

dpf
dTf

=
ℓs→ℓ

Tf (vℓ − vs)
et

dpv
dTv

=
ℓℓ→g

Tv (vg − vℓ)
(6.83)
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6.9 Règle des phases de Gibbs

6.9 Règle des phases de Gibbs
6.9.1 Règle des phases de Gibbs
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6.9.1 Règle des phases de Gibbs

Système : constitué de r substances chimiques réparties dans m phases
en absence de réaction chimique entre les substances.

Equilibre : entre les phases

1 Thermique : à température T

2 Mécanique : à pression p

3 Chimique : pour toute substance A dans chaque phase α

Phase : chaque phase α peut être modélisée comme un sous-système
simple décrit par les variables d’état T , p et {cα

A}.

Nombre de moles : dans la phase α

Nα =
r∑

A=1

N α
A (6.85)

Concentration molaire : substance A dans la phase α

cα
A =

N α
A

Nα
(6.90)
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6.9.1 Règle des phases de Gibbs

Somme des concentrations : dans la phase α (6.85) et (6.90)

r∑
A=1

cα
A =

r∑
A=1

N α
A

Nα
=

1

Nα

r∑
A=1

N α
A = 1 ∀ α = 1, ..,m (6.94)

L’équation (6.94) impose une condition sur les concentrations cα
A des

substances dans chaque phase α. Ainsi, il y a r − 1 variables
indépendantes cα

A dans chaque phase α. Comme il y a m phases, il y a
donc m (r − 1) variables indépendantes cα

A dans le système.

Equilibre chimique : substance A dans les m phases

µ1
A = µ2

A = . . . = µm
A ∀ A = 1, .., r (6.95)

La condition d’équilibre chimique (6.62) impose m− 1 contraintes sur les
potentiels chimiques µα

A de chaque substance A. Comme, il y a r
substances, il y a donc r (m− 1) contraintes imposées sur le système.
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6.9.1 Règle des phases de Gibbs

Variables d’état : T , p et {cα
A} : nombre : 2 +m (r − 1)

Contraintes : nombre : r (m− 1)

Règle des phases de Gibbs : degrés de liberté : diagramme (p, T )

f = 2 +m (r − 1)− r (m− 1) = r − m+ 2 (6.96)

1 Une substance dans une phase : 2 degrés de liberté : (p, T )

r = 1 et m = 1 ainsi f = 2

2 Une substance dans deux phases : 1 degré de lib. (coexistence) : p (T )

r = 1 et m = 2 ainsi f = 1

3 Une substance dans trois phases : 0 degré de liberté (point triple)

r = 1 et m = 3 ainsi f = 0
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6.9.1 Expérience - Phases du fer

Phases du fer :

1 Solide : cubique centré (cc) : température T < 910◦C

2 Solide : cubique face centré (cfc) : température 910◦C < T < 1535◦C

3 Liquide : T > 1535◦C

1 On chauffe un fil de fer à l’aide d’un courant électrique. Le fil se
contracte lors de la transition de la phase (cc) à la phase (cfc). Le poids
suspendu au centre du fil de fer monte.

2 On laisse le fil se refroidir et il se dilate lors de la transition de phase de
la phase (cfc) à la phase (cc). Le poids suspendu au centre du fil de fer
descend.
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6.10 Gaz de van der Waals

6.10 Gaz de van der Waals
6.10.1 Equation d’état du gaz de van der Waals
6.10.2 Transition de phase du gaz de van der Waals
6.10.3 Construction de Maxwell
6.10.4 Gaz réel
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6.10.1 Equation d’état du gaz de van der Waals

Gaz parfait : modèle de gaz idéalisé
Interaction moléculaire : chocs élastiques de points matériels

p∗V ∗ = NRT (5.66)

1 On néglige les forces d’attraction entre les atomes et molécules.

2 On néglige le volume propre occupé par les atomes et molécules.

3 On ne peut pas décrire de transition de phase.

Gaz de van der Waals : modèle de gaz réel
Interaction moléculaire : forces attractives entre des sphères dures(
p+

aN2

V 2

)
(V − N b) = NRT (6.102)

1 On rend compte des forces d’attraction entre les atomes et molécules
décrites par le paramètre a > 0.

2 On rend compte du volume propre occupé par les atomes et molécules
décrit par le paramètre b > 0.

3 On peut décrire une transition de phase.
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6.10.1 Equation d’état du gaz de van der Waals

Energie interne : l’énergie interne du gaz de van der Waals est la
somme de l’énergie interne du gaz parfait U∗ et de l’énergie potentielle
d’interaction moléculaire − aN n. L’énergie potentielle d’interaction
moléculaire est proportionnelle au nombre N de moles de substance et au
nombre de moles de molécules voisines qui est proportionnel à la densité
volumique n de molécules.

U = U∗ − aN n = U∗ − aN2

V
(6.97)

où l’énergie potentielle d’interaction moléculaire est négative car les
forces sont attractives, i.e a > 0.

Dérivées partielle : énergie interne

∂U

∂V
=

∂U∗

∂V
+

aN2

V 2
(6.98)

Pression :

p = p∗ − aN2

V 2
ainsi p∗ = p+

aN2

V 2
(6.99)

où les forces moléculaires attractives réduisent la pression, i.e. p < p∗.
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6.10.1 Equation d’état du gaz de van der Waals

Pression : la pression du gaz de van der Waals est la différence entre la
pression du gaz parfait p∗ et la chute de pression due aux forces
attractives.

p = p∗ − aN2

V 2
ainsi p∗ = p+

aN2

V 2
(6.99)

Volume : le volume du gaz de van der Waals est la somme du volume du
gaz parfait V ∗ et du volume N b occupé par N moles de sphères dures.

V = V ∗ +N b ainsi V ∗ = V − N b (6.100)

Equation d’état : gaz parfait

p∗V ∗ = NRT (5.66)

Equation d’état : gaz de van der Waals : (6.99) et (6.100) dans (5.66)(
p+

N2 a

V 2

)
(V − N b) = NRT (6.102)
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6.10.1 Equation d’état du gaz de van der Waals

Equation d’état molaire : (6.102) où le volume molaire v = V/N(
p+

a

v2

)
(v − b) = RT

Pression :

p =
RT

v − b
− a

v2
(6.103)

Point critique : point d’inflexion (pc, vc) du digramme (p, v)

∂p (v, T )

∂v

∣∣∣∣
vc,Tc

= 0 et
∂2p (v, T )

∂v2

∣∣∣∣
vc,Tc

= 0 (6.104)

Point critique : condition d’inflexion (6.103) dans (6.104)

− RTc

(vc − b)
2 +

2a

v3c
= 0 et

2RTc

(vc − b)
3 − 6a

v4c
= 0 (6.105)
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6.10.1 Equation d’état du gaz de van der Waals

Volume critique : combinaison des équations (6.105)

vc = 3b (6.106)

Température critique : (6.106) dans (6.105)

Tc =
8a

27Rb
(6.107)

Pression critique : (6.106) et (6.107) dans (6.103)

pc =
a

27b2
(6.108)

Grandeurs réduites : sans dimension

pr =
p

pc
et vr =

v

vc
et Tr =

T

Tc
(6.109)

Equation d’état molaire : (6.109) dans (6.103)

a pr
27 b2

=
8 a Tr

27 b2 (3 vr − 1)
− a

9 b2 v2r
(6.110)
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6.10.1 Equation d’état du gaz de van der Waals

Equation d’état molaire réduite : universelle (6.110) · 27 b2/a

pr =
8Tr

3 vr − 1
− 3

v2r
(6.111)

Cette équation est indépendante de la nature du gaz décrit par a et b.
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vr

r

Point critique : (pc, vc, Tc) ≡ (pr = 1, vr = 1, Tr = 1)
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6.10.2 Transition de phase du gaz de van der Waals

Processus isothermes : à température constante : courbes fines

Coexistence de phases : domaine sous la courbe épaisse
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liquide
liquide + gaz

gaz

Transition de phase : diagramme (pr, vr) isothermes d’Andrews

1 Premier ordre : (température sous-critique) T < Tc ainsi Tr < 1

2 Deuxième ordre : (température critique) T = Tc ainsi Tr = 1

3 Aucune : (température surcritique) T > Tc ainsi Tr > 1

Dr. Sylvain Bréchet 6 Transitions de phase 89 / 116



6.10.2 Expérience - Diagramme de phase (p,v)

Diagramme de phase : (p, v) - la phase solide est rouge, la phase
liquide est bleue, la phase gazeuse est orange, la phase fluide est jaune.
La coexistence de phases solide et gazeuse est brune, la coexistence de
phases liquide et gazeuse est verte et la coexistence de phases solide et
liquide est noire.

1 Gaz parfait : une phase gazeuse unique (le gaz est un fluide parfait).

2 CO2 : la surface de coexistence des phases solide et liquide est visible.
L’isotherme à température critique est la courbe noire.

3 H2O : la surface de coexistence des phases solide et liquide n’est pas
visible (anomalie). L’isotherme à température critique est la courbe noire.
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6.10.3 Construction de Maxwell

Condition locale de stabilité : digramme (p, v) (6.32) où N = cste

∂pr
∂vr

=
vc
pc

∂p

∂v
=

vc
pc

N
∂p

∂V
= − vc

pc

N

χT V
= − vc

pc

1

χT v
⩽ 0 (6.112)

Processus isotherme sous-critique : la courbe bleue entre les points 1
et 2 (traitillé) ne satisfait pas la condition locale de stabilité. Entre ces
points, la courbe doit être remplacée par une ligne de pente nulle (trait
plein) qui sature l’inégalité (6.112) où Tr = cste et pr = cste. Cette ligne
décrit une transition entre les phases liquide et gazeuse.
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6.10.3 Construction de Maxwell

Variation de l’énergie libre molaire : processus isotherme (4.77)

∆F1→2

N1→2
=

W1→2

N1→2
= − 1

N1→2

∫ 2

1

p dV = −
∫ 2

1

p dv (6.114)

Construction de Maxwell : (6.114) divisé par pc et vc∫ 2

1

pr dvr = pr1 (vr2 − vr1) (6.115)
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6.10.3 Construction de Maxwell

Construction de Maxwell : pour que l’intégrale qui représente l’aire
sous la courbe pr (vr) soit égale à la surface rectangulaire sous la droite
1-2, il faut que les aires (bleues) au-dessus et au-dessous de la droite
soient égales.

Courbe de saturation : la construction de Maxwell permet de
déterminer les points de coexistence de phases 1 et 2 sur une isotherme
sous-critique. L’ensemble de ces points forme la courbe de saturation
(trait épais).
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6.10.3 Construction de Maxwell

Région de coexistence de phase : au-dessous de la courbe de
saturation, on ne peut pas attribuer un volume molaire réduit unique vr à
la substance qui est constituée d’une phase liquide et d’une phase
gazeuse de volumes molaires différents. Lors d’un processus isotherme et
isobare (à température et pression constantes) entre les points 1 et 2,
l’état de la substance est une combinaison linéaire des deux phases dans
une proportion donnée par la règle du levier.

Vaporisation : (1 → 2) lors d’une vaporisation (processus isotherme et
isobare), lorsque le liquide est au point 1, la phase gazeuse apparâıt. Sa
proportion augmente ensuite de manière linéaire jusqu’à ce que la phase
liquide ait entièrement disparue lorsque le gaz est au point 2.

Condensation : (2 → 1) lors d’une condensation (processus isotherme
et isobare), lorsque le gaz est au point de coexistence 2, la phase liquide
apparâıt. Sa proportion augmente ensuite de manière linéaire jusqu’à ce
que la phase gazeuse ait entièrement disparue lorsque le liquide est au
point 1.
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6.10.4 Gaz réel

Gaz réel : pour décrire des transitions de phase entre les phases solide,
liquide et gazeuse, il faut améliorer le modèle du gaz de van der Waals
afin d’obtenir un modèle plus général. Un processus isotherme
sous-critique est représenté par une courbe bleue.

G
az

Liquide+Gaz

Solide+Gaz

T

v

Fluide
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6.10.4 Expérience - Cycle de van der Waals

Cycle de van der Waals : une substance effectue un cycle sur un
diagramme de phase (p, v). Le cycle est constitué de 6 processus qui
contournent le point critique de la substance dans le sens
trigonométrique.

1 Vaporisation : processus isochore et isobare : T < Tc et p < pc

2 Détente isotherme : processus isotherme : T < Tc

3 Compression isochore : processus isochore : V > Vc

4 Compression isotherme : processus isotherme : T > Tc

5 Contraction isobare : processus isochore : p > pc

6 Détente isotherme : processus isotherme : T < Tc
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6.11 Applications

6.11 Applications
6.11.1 Energie interne et enthalpie du gaz de van der Waals
6.11.2 Concavité de l’entropie
6.11.3 Convexité de l’énergie interne
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

Energie interne : gaz de van der Waals (6.97)

U = U∗ − aN2

V
= cNRT − aN2

V
(6.116)

Capacité thermique : isochore (6.117)

CV =
∂U

∂T

∣∣∣∣
V

= cNR (6.117)

Energie interne : (6.117) dans (6.116)

U = CV T − aN2

V
(6.118)

Différentielle de l’énergie interne : (6.118) système fermé

dU = CV dT + aN2 dV

V 2
(6.119)

Variation de l’énergie interne : état initial i → état final f

∆Ui→f = CV (Tf − Ti)− aN2

(
1

Vf
− 1

Vi

)
(6.120)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

Détente de Joule : on analyse la détente de Joule gaz de van der Waals
en se basant sur son énergie interne (6.118).

Variation de l’énergie interne : système isolé

∆Ui→f = CV (Tf − Ti)− aN2

(
1

Vf
− 1

Vi

)
= 0 (6.120)

Variation de température : détente de Joule (6.120)

Tf − Ti = − aN2

CV

(
Vf − Vi

Vi Vf

)
(6.121)

Coefficient de Joule : détente de Joule (6.121)

∆Ti→f

∆Vi→f
=

Tf − Ti

Vf − Vi
= − 1

CV

aN2

Vi Vf
< 0 (6.122)

Lors de la détente de Joule, le volume augmente, i.e. Vf > Vi, ce qui
implique que la température diminue, i.e. Tf < Ti. On constate que
l’introduction d’une force d’attraction, caractérisée par le paramètre
a > 0, rend compte d’un léger refroidissement.
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

Différentielle de l’enthalpie : système fermé : N = cste

dH
(
S (T, p) , p

)
= T dS (T, p) + V (T, p) dp (6.123)

Différentielle de l’entropie :

dS (T, p) =
∂S (T, p)

∂T
dT +

∂S (T, p)

∂p
dp (5.96)

Relation de Maxwell : énergie libre de Gibbs G (T, p)

∂S (T, p)

∂p
= − ∂V (T, p)

∂T
(4.91)

Capacité thermique isobare et coefficient de dilatation isobare :

Cp = T
∂S (T, p)

∂T
et αp =

1

V

∂V (T, p)

∂T
= − 1

V

∂S (T, p)

∂p

Différentielle de l’enthalpie : (5.96) dans (6.123)

dH
(
S (T, p) , p

)
= T

(
Cp

dT

T
− αp V (T, p) dp

)
+ V (T, p) dp (6.124)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

Différentielle de l’enthalpie : (6.124) remis en forme

dH
(
S (T, p) , p

)
= Cp dT + (1− αp T )V (T, p) dp (6.125)

Coefficient de dilatation isobare :

αp =
1

V

∂V (T, p)

∂T
(5.11)

Différentielle de l’enthalpie : (5.11) dans (6.125)

dH
(
S (T, p) , p

)
= Cp dT +

(
V (T, p)− T

∂V (T, p)

∂T

)
dp (6.126)

Identité cyclique de dérivées partielles : V (T, p), T (V, p) et p (T, V )

∂V (T, p)

∂T

∂T (V, p)

∂p

∂p (T, V )

∂V
= −1 (6.127)

Dérivée partielle du volume : (6.127)

∂V (T, p)

∂T
= − ∂p (T, V )

∂T

(
∂p (T, V )

∂V

)−1

(6.128)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

Différentielle de l’enthalpie : (6.128) dans (6.126) donne (6.129)

dH
(
S (T, p) , p

)
= Cp dT+

(
V (T, p) + T

∂p (T, V )

∂T

(
∂p (T, V )

∂V

)−1
)
dp

Equation d’état : gaz de van der Waals (6.102)

p (T, V ) =
NRT

V − N b
− aN2

V 2
(6.130)

Dérivées partielles : pression

∂p (T, V )

∂T
=

NR

V − N b

∂p (T, V )

∂V
= − NRT

(V − N b)
2 +

2 aN2

V 3

(6.131)

Produit de dérivées partielles : (6.131)

T
∂p (T, V )

∂T

(
∂p (T, V )

∂V

)−1

=
NRT (V − N b)

2 aN2 (V − N b)
2

V 3
− NRT

(6.132)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

Equation d’état : gaz de van der Waals

p (T, V ) =
NRT

V − N b
− aN2

V 2
(6.130)

Produit de dérivées partielles :

T
∂p (T, V )

∂T

(
∂p (T, V )

∂V

)−1

=
NRT (V − N b)

2 aN2 (V − N b)
2

V 3
− NRT

(6.132)

Gaz dilué : les paramètres a et b d’un gaz dilué sont suffisamment petits
pour qu’on puisse négliger les termes en a b au premier ordre en a et b, et
sa pression p est très voisine de celle d’un gaz parfait : (6.134)

T
∂p (T, V )

∂T

(
∂p (T, V )

∂V

)−1

≃ V − N b
2 aN

RTV
− 1

= (N b− V )

(
1− 2 aN

RTV

)−1

p ≃ NRT

V − N b
≫ N2 a

V 2
ainsi

Na

RTV
≪ V

V − N b
≃ 1 (6.136)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

Gaz dilué :

2 aN

RTV
≪ 1 (6.136)

Produit de dérivées partielles : dévelop. limité au premier ordre (6.134)

T
∂p (T, V )

∂T

(
∂p (T, V )

∂V

)−1

≃ (N b− V )

(
1 +

2 aN

RTV

)
(6.137)

Produit de dérivées partielles : gaz dilué : produit a b négligeable

T
∂p (T, V )

∂T

(
∂p (T, V )

∂V

)−1

≃ N b− V − 2 aN

RT
(6.138)

Différentielle de l’enthalpie : (6.129)

dH
(
S (T, p) , p

)
= Cp dT+

(
V (T, p) + T

∂p (T, V )

∂T

(
∂p (T, V )

∂V

)−1
)
dp

Différentielle de l’enthalpie : (6.138) dans (6.129)

dH
(
S (T, p) , p

)
= Cp dT −

(
2 aN

RT
− N b

)
dp (6.139)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

Théorème de Schwarz : enthalpie H
(
S (T, p) , p

)
∂

∂p

(
∂H

∂T

∣∣∣∣
p

)
=

∂

∂T

(
dH

dp

∣∣∣∣
T

)
(6.140)

Relation de Maxwell : enthalpie H
(
S (T, p) , p

)
∂Cp

∂p
=

∂

∂T

(
−N

(
2a

RT
− b

))
=

2Na

RT 2
=

V

T

2 aN

RTV
(6.141)

Gaz dilué :

2 aN

RTV
≪ 1 (6.136)

Relation de Maxwell : (6.136) dans (6.141)

∂Cp

∂p
≃ 0 (6.142)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

Capacité thermique isobare : indépendante de la pression

∂Cp

∂p
≃ 0 (6.142)

Pour un gaz dilué, la capacité thermique isobare Cp est indépendante de
la pression. Comme le gaz de van der Waals se réduit au gaz parfait
lorsque la pression du système est suffisamment petite, la capacité
thermique isobare du gaz dilué de van der Waals, qui est indépendante de
la pression, doit être égale à celle du gaz parfait.

Capacité thermique isobare : (5.83)

Cp = (c+ 1)NR (6.143)

Différentielle de l’enthalpie : (6.143) dans (6.139)

dH = (c+ 1)NRdT −
(
2 aN

RT
− N b

)
dp

Enthalpie : gaz dilué

H
(
S (T, p) , p

)
= Cp T −

(
2 aN

RT
− N b

)
p (6.144)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

Enthalpie : gaz dilué

H
(
S (T, p) , p

)
= Cp T −

(
2 aN

RT
− N b

)
p (6.144)

Détente de Joule-Thomson : on analyse la détente isenthalpique de
Joule-Thomson d’un gaz dilué de van der Waals en se basant sur son
enthalpie (6.144) qui est constante.

Variation d’enthalpie : état initial i → état final f : (6.145)

∆Hi→f = Cp (Tf − Ti)−
(
2 aN

RTf
− N b

)
pf +

(
2 aN

RTi
− N b

)
pi = 0

Variation de température : (6.145)

Tf − Ti =
1

Cp

((
2 aN

RTf
− N b

)
pf −

(
2 aN

RTi
− N b

)
pi

)
(6.146)

Approximation : température moyenne (Ti + Tf ) /2

pf
Tf

− pi
Ti

≃ 2

Ti + Tf
(pf − pi) (6.147)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

Variation de température :

Tf − Ti =
1

Cp

((
2 aN

RTf
− N b

)
pf −

(
2 aN

RTi
− N b

)
pi

)
(6.146)

Approximation : température moyenne (Ti + Tf ) /2

pf
Tf

− pi
Ti

≃ 2

Ti + Tf
(pf − pi) (6.147)

Variation de température : (6.147) dans (6.146)

Tf − Ti =
1

Cp

(
4 aN

R (Ti + Tf )
− N b

)
(pf − pi) (6.148)

Coefficient de Joule-Thomson : (6.129) dans (6.136)

∆Ti→f

∆pi→f
=

Tf − Ti

pf − pi
=

1

Cp

(
4Na

R (Ti + Tf )
− N b

)
(6.147)

Le signe du coefficient dépend du gaz et de la température. Il est négatif
pour l’air et positif pour l’hélium à température ambiante.
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6.11.2 Concavité de l’entropie

Concavité de l’entropie : S (U, V )

1

2

(
S (U − ∆U, V − ∆V ) + S (U +∆U, V +∆V )

)
⩽ S (U, V ) (6.152)
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6.11.2 Concavité de l’entropie

Concavité de l’entropie : S (U, V )

1

2

(
S (U − ∆U, V − ∆V ) + S (U +∆U, V +∆V )

)
⩽ S (U, V ) (6.152)

Développement limité : au 2e ordre de S (U +∆U, V +∆V ) (6.153)

S (U +∆U, V +∆V ) ≃ S (U, V ) +
∂S (U, V )

∂U
∆U +

∂S (U, V )

∂V
∆V

+
1

2!

(
∂2S (U, V )

∂U2
∆U2 + 2

∂2S (U, V )

∂U ∂V
∆U ∆V +

∂2S (U, V )

∂V 2
∆V 2

)
Développement limité : au 2e ordre de S (U −∆U, V −∆V ) (6.154)

S (U −∆U, V −∆V ) ≃ S (U, V )− ∂S (U, V )

∂U
∆U − ∂S (U, V )

∂V
∆V

+
1

2!

(
∂2S (U, V )

∂U2
∆U2 + 2

∂2S (U, V )

∂U ∂V
∆U ∆V +

∂2S (U, V )

∂V 2
∆V 2

)
Condition de concavité : (6.153) et (6.154) dans (6.152)

∂2S (U, V )

∂U2
∆U2+2

∂2S (U, V )

∂U ∂V
∆U ∆V +

∂2S (U, V )

∂V 2
∆V 2 ⩽ 0 (6.155)
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6.11.2 Concavité de l’entropie

Condition de concavité :

∂2S (U, V )

∂U2
∆U2+2

∂2S (U, V )

∂U ∂V
∆U ∆V +

∂2S (U, V )

∂V 2
∆V 2 ⩽ 0 (6.155)

Variation du deuxième ordre : de l’entropie (6.156)

∆2 S (U, V ) ≡ ∂2S (U, V )

∂U2
∆U2+2

∂2S (U, V )

∂U ∂V
∆U ∆V+

∂2S (U, V )

∂V 2
∆V 2

Variation du deuxième ordre : (6.156) dans (6.155) : (6.157)

∆2 S (U, V ) =
(
∆U, ∆V

)


∂2S (U, V )

∂U2

∂2S (U, V )

∂U ∂V

∂2S (U, V )

∂V ∂U

∂2S (U, V )

∂V 2


∆U

∆V

 ⩽ 0

Matrice hessienne de l’entropie : H (S) est symétrique et semi-définie
négative (6.157). Ainsi, elle est diagonalisable avec deux valeurs propres
négatives ou nulles.
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6.11.2 Concavité de l’entropie

Variation du deuxième ordre : (6.156) dans (6.155) : (6.157)

∆2 S (U, V ) =
(
∆U, ∆V

)


∂2S (U, V )

∂U2

∂2S (U, V )

∂U ∂V

∂2S (U, V )

∂V ∂U

∂2S (U, V )

∂V 2


∆U

∆V

 ⩽ 0

Matrice hessienne de l’entropie : H (S) est symétrique et semi-définie
négative (6.157). Ainsi, elle est diagonalisable avec deux valeurs propres
négatives ou nulles :

λS1
⩽ 0 et λS2

⩽ 0

Déterminant de la matrice hessienne : (6.159)

det
(
H (S)

)
= λS1 λS2 =

∂2S (U, V )

∂U2

∂2S (U, V )

∂V 2
−
(
∂2S (U, V )

∂U ∂V

)2

⩾ 0

La condition locale de concavité (6.159) signifie que la fonction entropie
S (U, V ) est une surface de courbure de Gauss positive dans l’espace des
états (U, S, V ).
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6.11.3 Convexité de l’énergie interne

Convexité de l’énergie interne : U (S, V ) entre U (S1, V1) et U (S2, V2)

1

2

(
U (S − ∆S, V − ∆V ) + U (S +∆S, V +∆V )

)
⩾ U (S, V ) (6.161)
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6.11.3 Convexité de l’énergie interne

Convexité de l’énergie interne : U (S, V )

1

2

(
U (S − ∆S, V − ∆V ) + U (S +∆S, V +∆V )

)
⩾ U (S, V ) (6.161)

Développement limité : au 2e ordre de U (S +∆S, V +∆V ) (6.162)

U (S +∆S, V +∆V ) ≃ U (S, V ) +
∂U (S, V )

∂S
∆S +

∂U (S, V )

∂V
∆V

+
1

2!

(
∂2U (S, V )

∂S2
∆S2 + 2

∂2U (S, V )

∂S ∂V
∆S∆V +

∂2U (S, V )

∂V 2
∆V 2

)
Développement limité : au 2e ordre de U (S −∆S, V −∆V ) (6.163)

U (S −∆S, V −∆V ) ≃ U (S, V )− ∂U (S, V )

∂S
∆S − ∂U (S, V )

∂V
∆V

+
1

2!

(
∂2U (S, V )

∂S2
∆S2 + 2

∂2U (S, V )

∂S ∂V
∆S∆V +

∂2U (S, V )

∂V 2
∆V 2

)
Condition de convexité : (6.162) et (6.163) dans (6.161)

∂2U (S, V )

∂S2
∆S2+2

∂2U (S, V )

∂S ∂V
∆S∆V +

∂2U (S, V )

∂V 2
∆V 2 ⩾ 0 (6.164)
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6.11.3 Convexité de l’énergie interne

Condition de convexité : (6.162) et (6.163) dans (6.161)

∂2U (S, V )

∂S2
∆S2+2

∂2U (S, V )

∂S ∂V
∆S∆V +

∂2U (S, V )

∂V 2
∆V 2 ⩾ 0 (6.164)

Variation du deuxième ordre : de l’énergie interne (6.165)

∆2 U (S, V ) ≡ ∂2U (S, V )

∂S2
∆S2+2

∂2U (S, V )

∂S ∂V
∆S∆V+

∂2U (S, V )

∂V 2
∆V 2

Variation du deuxième ordre : (6.165) dans (6.164) : (6.166)

∆2 U (S, V ) =
(
∆S, ∆V

)


∂2U (S, V )

∂S2

∂2U (S, V )

∂S ∂V

∂2U (S, V )

∂V ∂U

∂2U (S, V )

∂V 2


∆S

∆V

 ⩾ 0

Matrice hessienne de l’énergie interne : H (U) est symétrique et
semi-définie positive (6.166). Ainsi, elle est diagonalisable avec deux
valeurs propres positives ou nulles.
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Variation du deuxième ordre : (6.165) dans (6.164) : (6.166)

∆2 U (S, V ) =
(
∆S, ∆V

)


∂2U (S, V )

∂S2

∂2U (S, V )

∂S ∂V

∂2U (S, V )

∂V ∂U

∂2U (S, V )

∂V 2


∆S

∆V

 ⩾ 0

Matrice hessienne de l’énergie interne : H (U) est symétrique et
semi-définie positive (6.166). Ainsi, elle est diagonalisable avec deux
valeurs propres positives ou nulles :

λU1
⩾ 0 et λU2

⩾ 0

Déterminant de la matrice hessienne : (6.167)

det
(
H (U)

)
= λU1 λU2 =

∂2U (S, V )

∂S2

∂2U (S, V )

∂V 2
−
(
∂2U (S, V )

∂S ∂V

)2

⩾ 0

La condition locale de convexité (6.167) signifie que la fonction énergie
interne U (S, V ) est une surface de courbure de Gauss positive dans
l’espace des états (U, S, V ).
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